Relative Affine Schemes

نویسنده

  • Daniel Murfet
چکیده

1 Affine Morphisms Definition 1. Let f : X −→ Y be a morphism of schemes. Then we say f is an affine morphism or that X is affine over Y , if there is a nonempty open cover {Vα}α∈Λ of Y by open affine subsets Vα such that for every α, fVα is also affine. If X is empty (in particular if Y is empty) then f is affine. Any morphism of affine schemes is affine. Any isomorphism is affine, and the affine property is stable under composition with isomorphisms on either end. Example 1. Any closed immersion X −→ Y is an affine morphism by our solution to (Ex 4.3). Remark 1. A scheme X affine over S is not necessarily affine (for example X = S) and if an affine scheme X is an S-scheme, it is not necessarily affine over S. However, if S is separated then an S-scheme X which is affine is affine over S. Lemma 1. An affine morphism is quasi-compact and separated. Any finite morphism is affine. Proof. Let f : X −→ Y be affine. Then f is separated since any morphism of affine schemes is separated, and the separatedness condition is local. Since any affine scheme is quasi-compact it is clear that f is quasi-compact. It follows from (Ex. 3.4) that a finite morphism is an affine morphism of a very special type.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Math 632 Notes Algebraic Geometry

1 Affine schemes 4 1.1 Motivation and review of varieties . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 First attempt at defining an affine scheme . . . . . . . . . . . . . . . . . . . 4 1.3 Affine schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 The Zariski topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.5 The ringed space s...

متن کامل

Vector bundles on contractible smooth schemes

We discuss algebraic vector bundles on smooth k-schemes X contractible from the standpoint of A-homotopy theory; when k = C, the smooth manifolds X(C) are contractible as topological spaces. The integral algebraic K-theory and integral motivic cohomology of such schemes are that of Spec k. One might hope that furthermore, and in analogy with the classification of topological vector bundles on m...

متن کامل

Differential Graded Schemes I: Perfect Resolving Algebras

We introduce perfect resolving algebras and study their fundamental properties. These algebras are basic for our theory of differential graded schemes, as they give rise to affine differential graded schemes. We also introduce étale morphisms. The purpose for studying these, is that they will be used to glue differential graded schemes from affine ones with respect to an étale topology.

متن کامل

Quotients of Algebraic Groups

In this note, we study the existence and structure of the homogeneous space G/H for algebraic groups H ⊂ G. Let k be a field. All schemes considered will be k-schemes. By an affine algebraic group, we mean an affine group scheme of finite type over k. Note that we do not assume our schemes are reduced yet. We will only consider affine algebraic groups. From now on, G will denote an algebraic gr...

متن کامل

Chow groups of Zero-Cycles Relative to Hyperplane Arrangements

The schemes Spec (k[x0, . . . , xn]/( P xi − 1)) were used homologically by Bloch to define higher Chow groups. We prove an alternate, ‘classical’, characterization of higher Chow groups, in the zero-cycle case over a field k, in terms of divisors of functions on curves. Since an arrangement of hyperplanes A is given by a finite number of linear forms on affine space, such as the n + 1 forms xi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006